

Enhanced ESD, 3.0 kV rms 600Mbps Single-Channel Digital Isolators

Data Sheet $\pi 110A$

FEATURES

Ultra low power consumption:

0.50mA/Channel

High data rate: $\pi 110A3x$: 600Mbps

π110E3x: 200Mbps π110M3x: 10Mbps

High common-mode transient immunity: 50 kV/µs typical

High robustness to radiated and conducted noise

Low propagation delay:

5.0 ns typical for 5 V operation7.0 ns typical for 3.3 V operation

Isolation voltages:

π110x3x: AC 3000Vrms

High ESD rating:

ESDA/JEDEC JS-001-2017

Human body model (HBM) ±7kV, all pins

Safety and regulatory approvals:

UL certificate number: E494497

3000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A(Pending)

VDE certificate number: 40047929

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V_{IORM} = 565V peak

CQC certification per GB4943.1-2011(Pending)

3 V to 5.5 V level translation

AEC-Q100 qualification

Wide temperature range: -40°C to 125°C 8-lead, RoHS-compliant, SOIC package

APPLICATIONS

General-purpose multichannel isolation Industrial field bus isolation

GENERAL DESCRIPTION

The $\pi 1 xxxxx$ are 2PaiSemi digital isolators product family. By using maturated standard semiconductor CMOS technology and innovative design, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated isolators. The $\pi 1 xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 3.0 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier.

The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

FUNCTIONAL BLOCK DIAGRAMS

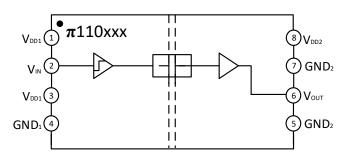


Figure 1. π 110xxx functional Block Diagram

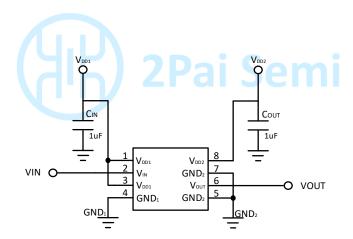


Figure 2. π 110xxx Typical Application Circuit

http://www.rpsemi.com/

PIN CONFIGURATIONS AND FUNCTIONS

π110A3x Pin Function Descriptions

Pin No.	Name	Description
1	V _{DD1}	Supply Voltage for Isolator Side 1.
2	VIN	Logic Input.
3	V _{DD1}	Supply Voltage for Isolator Side 1.
4	GND₁	Ground 1. This pin is the ground reference for Isolator Side 1.
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
6	Vоит	Logic Output.
7	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
8	V _{DD2}	Supply Voltage for Isolator Side 2.

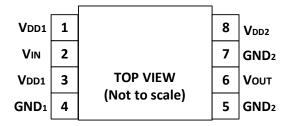


Figure 3. π 110A3x Pin Configuration

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 1. Absolute Maximum Ratings⁴

Parameter	Rating		
Supply Voltages (V _{DD1} -GND ₁ , V _{DD2} -GND ₂)	-0.5 V to +7.0 V		
Input Voltages (V _{IA} , V _{IB}) ¹	-0.5 V to V _{DDx} + 0.5 V		
Output Voltages (V _{OA} , V _{OB}) ¹	-0.5 V to V _{DDx} + 0.5 V		
Average Output Current per Pin ² Side 1 Output Current (I _{O1})	-10 mA to +10 mA		
Average Output Current per Pin ² Side 2 Output Current (I _{O2})	-10 mA to +10 mA		
Common-Mode Transients Immunity ³	-150 kV/μs to +150 kV/μs		
Storage Temperature (T _{ST}) Range	-65°C to +150°C		
Ambient Operating Temperature (T _A) Range	-40°C to +125°C		

Notes

RECOMMENDED OPERATING CONDITIONS

Table 2. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{DDx} ¹	3		5.5	V
High Level Input Signal Voltage	V_{IH}	$0.7*V_{DDx}^1$		V_{DDx}^{1}	V
Low Level Input Signal Voltage	V_{IL}	0		$0.3*V_{DDx}^{1}$	V
High Level Output Current	Іон	-6			mA
Low Level Output Current	Іоь			6	mA
Maximum Data Rate		0		600	Mbps
Junction Temperature	TJ	-40		150	°C
Ambient Operating Temperature	T _A	-40		125	°C

Notes:

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

² See Figure 4 for the maximum rated current values for various temperatures.

 $^{^{\}rm 3}\,\text{See}$ Figure13 for Common-mode transient immunity (CMTI) measurement.

⁴ Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

Truth Tables

Table 3. $\pi 110xxx$ Truth Table

V. Immust1	V State1	V State1	Default Low	Default High	Test Conditions	
V _{Ix} Input ¹	V _{DDI} State ¹	V _{DDO} State ¹	Vox Output ¹	Vox Output ¹	/Comments	
Low	Powered ²	Powered ²	Low	Low	Normal operation	
High	Powered ²	Powered ²	High	High	Normal operation	
Open	Powered ²	Powered ²	Low	High	Default output	
Don't Care ⁴	Unpowered ³	Powered ²	Low	High	Default output⁵	
Don't Care ⁴	Powered ²	Unpowered ³	High Impedance	High Impedance		

Notes

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Table 4. Switching Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \ or \ 5 \\ V_{DC} \pm 10\%, \ T_A = 25 \\ ^{\circ}C, \ unless \ otherwise \ noted.$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Minimum Pulse Width	PW	- 1 \		1.6	ns	Within pulse width distortion (PWD) limit
Maximum Data Rate	И	600			Mbps	Within PWD limit
Propagation Delay Time ^{1,4}	t рнь, t рын	3.5	5.0	7.5	ns	The different time between 50% input signal to 50% output signal 50% @ 5V _{DC} supply
		5.5	7.0	9.5	ns	@ 3.3V _{DC} supply
Pulse Width Distortion ⁴	PWD	0	0.3	0.8	ns	The max different time between tphL and tpLH@ 5V _{DC} supply. And The value is tpHL - tpLH
		0	0.3	0.8	ns	@ 3.3V _{DC} supply
Part to Part Propagation Delay Skew ⁴	t psk			1	ns	The max different propagation delay time between any two devices at the same temperature, load and voltage @ 5V _{DC} supply
				1	ns	@ 3.3V _{DC} supply
Output Signal Rise/Fall Time ⁴	t _r /t _f		0.7		ns	10% to 90% signal terminated 50Ω , See figure 9.
Dynamic Input Supply Current per Channel	Iddi (d)		9		μΑ /Mbps	Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $5V_{DC}$ Supply
Dynamic Output Supply Current per Channel	Iddo (d)		38		μΑ /Mbps	Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $5V_{DC}$ Supply
Dynamic Input Supply Current per Channel	Iddi (d)		5		μΑ /Mbps	Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $3.3V_{DC}$ Supply
Dynamic Output Supply Current per Channel	Iddo (d)		23		μΑ /Mbps	Inputs switching, 50% duty cycle square wave, CL = 0 pF @ $3.3V_{\rm DC}$ Supply
Common-Mode Transient Immunity ³	СМТІ		50		kV/μs	$V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000 \text{ V}$
Jitter			90		ps p-p	See the Jitter Measurement section
			15		ps rms	See the Jitter Measurement section

 $^{^1}$ V_{lx}/V_{Ox} are the input/output signals of a given channel (A or B). V_{DDI}/V_{DDO} are the supply voltages on the input/output signal sides of this given channel.

² Powered means V_{DDx}≥ 2.9 V

 $^{^{3}}$ Unpowered means V_{DDx} < 2.3V

 $^{^4}$ Input signal (V_{IX}) must be in a low state to avoid powering the given $V_{DDI}{}^1$ through its ESD protection circuitry.

⁵ If the V_{DDI} goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V_{DDI} goes into powered status, the channel outputs the input status logic signal after around 1us.

ESD(HBM - Human body	ESD	+7	k\/	all pins
model)	LJD	±7	KV	all pills

Notes:

Table 5. DC Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\% \ or \ 5 V_{DC} \pm 10\%, \ T_A = 25 ^{\circ}C, \ unless \ otherwise \ noted.$

	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
High Level Input Signal Voltage	V _{IH}			0.7*V _{DDx} ¹	V	
Low Level Input Signal Voltage	V_{IL}	0.3* V _{DDX} 1			V	
High Level Output Voltage	Von ¹	V _{DDx} - 0.1	V_{DDx}		V	–20 μA output signal
		V _{DDx} - 0.2	$V_{DDx} - 0.1$		V	-2 mA output signal
Low Level Output Voltage	Vol		0	0.1	V	20 μA output signal
			0.1	0.2	V	2 mA output signal
Input Current per Signal Channel	I _{IN}	-10	0.5	10	μΑ	$0 \text{ V} \leqslant \text{Signal voltage} \leqslant \text{V}_{\text{DDX}}^1$
V _{DDx} 1 Undervoltage Rising Threshold	V _{DDxUV+}	2.45	2.65	2.9	V	
V _{DDx} 1 Undervoltage Falling Threshold	V _{DDxUV} -	2.3	2.5	2.75	V	
V _{DDx} ¹ Hysteresis	VDDxUVH		0.15		V	

Table 6. Quiescent Supply Current

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\%$ or $5 V_{DC} \pm 10\%$, $T_A = 25$ °C, $C_L = 0$ pF, unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
	IDD1 (Q)	98	123	160	μΑ	0V Input signal
-110 A O Correla Command @ 5V Correla	IDD2 (Q)	272	340	442	μΑ	0V Input signal
π110Axx Quiescent Supply Current @ 5V _{DC} Supply	I _{DD1} (Q)	99	124	161	μΑ	5V Input signal
	Idd2 (Q)	253	316	411	μΑ	5V Input signal
	IDD1 (Q)	72	90	117	μΑ	0V Input signal
	I _{DD2} (Q)	277	346	450	μΑ	0V Input signal
@ 3.3V _{DC} Supply	IDD1 (Q)	73	91	118	μΑ	3.3V Input signal
	Idd2 (Q)	258	323	420	μΑ	3.3V Input signal

 $^{^{1}}$ t_{pLH} = low-to-high propagation delay time, t_{pHL} = high-to-low propagation delay time. See figure 10.

 $^{^2\,}V_{DDx}$ is the side voltage power supply $V_{DD},$ where x = 1 or 2.

 $^{^{\}rm 3}\,\mbox{See}$ Figure 13 for Common-mode transient immunity (CMTI) measurement.

 $^{^4}$ Output Signal Terminated 50 $\!\Omega.$

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

Data Sheet π110A

Table 7. Total Supply Current vs. Data Throughput ($C_L = 0 pF$)

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 \\ V_{DC} \pm 10\% \text{ or } 5 \\ V_{DC} \pm 10\%, \\ T_A = 25 \\ ^{\circ}\text{C}, \\ C_L = 0 \text{ pF, unless otherwise noted.}$

Dovometer	Cumbal		150 Kbps			10 Mbps			100 Mbps		
Parameter Symbol		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
=110Avv Cupply Current @ FV	I _{DD1}		0.12	0.18		0.19	0.29		0.85	1.28	mA
π 110Axx Supply Current @ 5V _{DC}	I _{DD2}		0.34	0.51		0.74	1.11		4.01	6.02	mA
@ 2.3V	I _{DD1}		0.09	0.14		0.15	0.23		0.55	0.83	mA
@ 3.3V _{DC}	I _{DD2}		0.31	0.47		0.59	0.89		2.64	3.96	mA

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 8. Insulation Specifications

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		3000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L (I01)	4.0	mm min	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L (102)	4.0	mm min	Measured from input terminals to output terminals, shortest distance path along body
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L (PCB)	4.5	mm min	Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane
Minimum Internal Gap (Internal Clearance)		8	μm min	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	СТІ	>400	V	DIN IEC 112/VDE 0303 Part 1
Material Group		Ш		Material Group (DIN VDE 0110, 1/89, Table 1)

PACKAGE CHARACTERISTICS

Table 9. Package Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10^{11}		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		0.6		pF	@1MHz
Input Capacitance ²	Cı		3.0		pF	@1MHz
IC Junction to Ambient Thermal Resistance	θја		100		°C/W	Thermocouple located at center of package underside

Notes:

REGULATORY INFORMATION

See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

Table 10. Regulatory

Regulatory	π110A3x
UL	Recognized under UL 1577
	Component Recognition Program ¹
	Single Protection, 3000 V rms Isolation Voltage
	File (E494497)
CSA	Approved under CSA Component Acceptance Notice 5A
	CSA 60950-1-07+A1+A2 and

¹The device is considered a 2-terminal device; SOIC-8 Pin 1 - Pin 4 are shorted together as the one terminal, and SOIC-8 Pin 5 - Pin 8 are shorted together as the other

²Testing from the input signal pin to ground.

	IEC 60950-1, second edition, +A1+A2:					
	Basic insulation at 400 V rms (565 V peak)					
	Reinforced insulation at 200 V rms					
	(283 V peak)					
	File (pending)					
VDE	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ²					
	Basic insulation, V _{IORM} = 565 V peak, V _{IOSM} = 4615 V peak					
	File (40047929)					
cqc	Certified under					
	CQC11-471543-2012					
	GB4943.1-2011					
	Basic insulation at 400 V rms (565 V peak) working					
	voltage					
	Reinforced insulation at					
	200 V rms (283 V peak)					
	File (pending)					

Notes:

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.

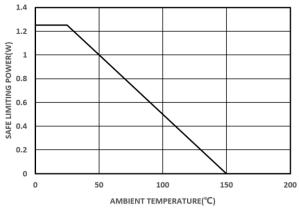
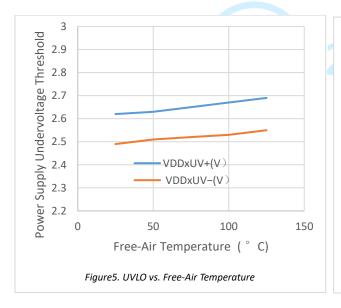
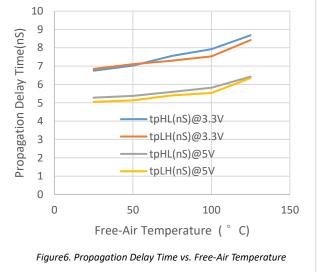
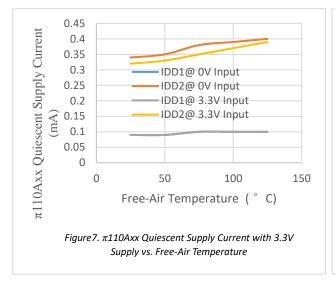
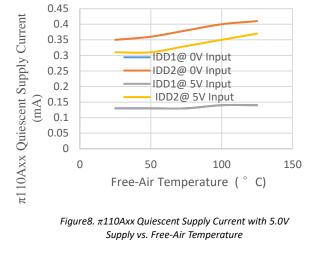
Table 11. VDE Insulation Characteristics

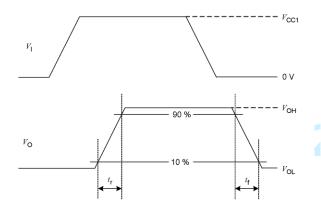
Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN				
VDE 0110				
For Rated Mains Voltage \leqslant 150 V			I to IV	
rms				
For Rated Mains Voltage ≤ 300 V			l to III	
rms			1 10 111	
For Rated Mains Voltage ≤ 400 V			l to III	
rms				
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110,			2	
Table 1			2	
Maximum Working Insulation		Viorm	565	Vpeak
Voltage		VIORIVI	303	Vpcak
Input to Output Test Voltage,	$V_{IORM} \times 1.875 = V_{pd (m)}, 100\%$			
Method B1	production test, tini = t_m = 1 sec,	V _{pd} (m)	1059	Vpeak
	partial discharge < 5 pC			
Input to Output Test Voltage,				
Method A				
After Environmental Tests	$V_{IORM} \times 1.5 = V_{pd (m)}$, $t_{ini} = 60 \text{ sec}$, t_m	V _{pd (m)}	848	Vpeak
Subgroup 1	= 10 sec, partial discharge < 5 pC	• pa ()	0.0	· pean
After Input and/or Safety Test	$V_{IORM} \times 1.2 = V_{pd (m)}, t_{ini} = 60 \text{ sec}, t_{m}$		678	Vpeak
Subgroup 2 and Subgroup 3	= 10 sec, partial discharge < 5 pC		0/0	уреак
Highest Allowable Overvoltage		Vютм	4200	Vpeak
	Basic insulation, 1.2 μs rise time, 50			
Surge Isolation Voltage Basic	μs, 50% fall time	Viosm	4615	Vpeak

 $^{^{1}}$ In accordance with UL 1577, each π 110A3xis proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec

² In accordance with DIN V VDE V 0884-10, eachπ110A3xis proof tested by applying an insulation test voltage ≥ 1059 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

Surge Isol	ation Voltage Reinforced	Reinforced insulation, 1.2 μs rise time, 50 μs, 50% fall time	Viosm		Vpeak
Safety Lim	niting Values	Maximum value allowed in the event of a failure (see Figure 4)			
Maximum	Junction Temperature		T _S	150	°C
Total Pow	er Dissipation at 25°C		P_S	1.25	W
Insulation	Resistance at T _S	V _{IO} = 800 V	R_{S}	>10 ⁹	Ω


Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE

V_{DDX}
V_{DDX}
V_{DDX}
0 V
0 V
V_O
V_O
V_O
V_{DDX}

Figure 9. Transition time waveform measurement

Figure 10. Propagation delay time waveform measurement

APPLICATIONS INFORMATION

OVERVIEW

The $\pi 1 xxxxx$ are 2PaiSemi digital isolators product family. By using maturated standard semiconductor CMOS technology and innovative design, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated isolators. The $\pi 1 xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 3.0 kV rms to 6.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide).

The $\pi 110 \text{A}3x$ are the outstanding 600 Mbps single -channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation.

The devices operate with the supply voltage on either side ranging from 3.0~V to 5.5~V, offering voltage translation of 3.3~V and 5~V logic.

The $\pi 110 A3x$ have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the fail-safe output state of low or high.

PCB LAYOUT

The low-ESR ceramic bypass capacitors must be connected between V_{DD1} and GND_1 and between V_{DD2} and GND_2 . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between $0.1~\mu F$ and $10~\mu F$.

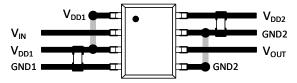


Figure 11. Recommended Printed Circuit Board Layout

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect.

To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

JITTER MEASUREMENT

The eye diagram shown in the figure 18 provides the jitter measurement result for the $\pi 110 \text{A}3x$. The Keysight 81160A pulse function arbitrary generator works as the data source for the $\pi 110 \text{A}3x$, which generates 100Mbps pseudo random bit sequence (PRBS). The Keysight DSOS104A digital storage oscilloscope captures the $\pi 110 \text{A}3x$ output waveform and recoveries the eye diagram with the SDA tools and eye diagram analysis tools. The result shows a typical measurement 90ps pp jitter.

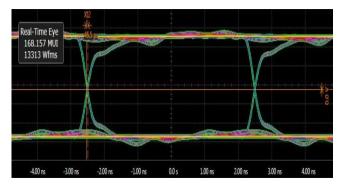


Figure 12. π 110A3x Eye Diagram

CMTI MEASUREMENT

To measure the Common-Mode Transient Immunity (CMTI) of $\pi 1xxxxx$ isolator under specified common-mode pulse magnitude (V_{CM}) and specified slew rate of the common-mode pulse (dV_{CM}/dt) and other specified test or ambient conditions, The common-mode pulse generator (G_1) will be capable of providing fast rising and falling pulses of specified magnitude and duration

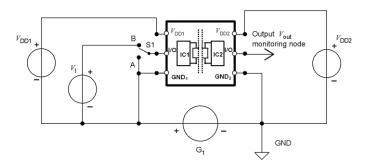


Figure 13. Common-mode transient immunity (CMTI) measurement

OUTLINE DIMENSIONS

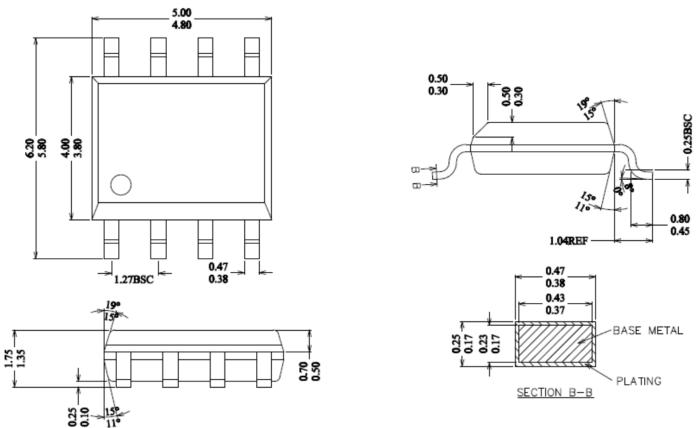
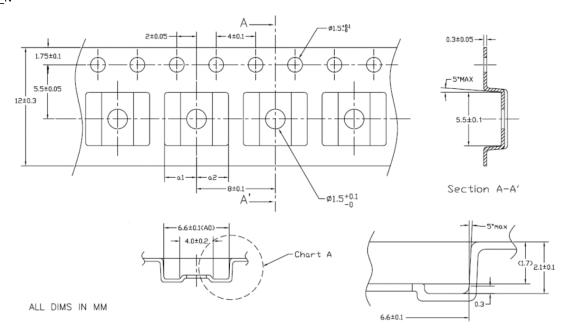
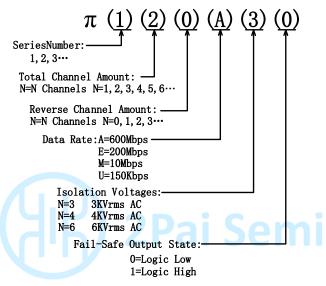



Figure 14. 8-Lead Standard Small Outline Package [8-Lead SOIC_N]

REEL INFORMATION

8-Lead SOIC_N



ORDERING GUIDE

Mode	el Name	Temperature Range	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Withstand Voltage Rating (kV rms)	Fail- Safe Output State	Package Description		
π110A31	Pai110A31	-40°C to +125°C	1	0	3	High	8-Lead SOIC_N	S-8-N	4000 per reel
π110A30	Pai110A30	-40°C to +125°C	1	0	3	Low	8-Lead SOIC_N	S-8-N	4000 per reel

Notes:

PART NUMBER NAMED RULE

Notes:Pai11xxxx is equals to $\pi 11xxxx$ in the customer BOM

REVISION HISTORY

Revision	Updated	Date	Page	Change Record
1	Devin	2018/09/19	All	Initial version
2	Devin	2018/11/28	P1,P9	Changed C_{IN} , C_{OUT} in Figure 2 from 0.1uF to 1uF Changed the recommended bypass capacitor value from between 0.1 μ F and 1 μ F to between 0.1 μ F and 10 μ F.

 $^{^{\}mathbf{1}}\,\pi\mathtt{11xxxxQ}$ special for Auto, qualified for AEC-Q100